Ecological Assets of PORTS: Enhancing Decision-Making for PORTS Future Use Planning

Voinovich School of Leadership and Public Affairs

Presented by Gary Conley

Role of the Voinovich School and Ohio University in the Demolition and Decontamination of the DOE PORTS Nuclear Enrichment Facility near Piketon, Ohio

- Tasks support the DOE EM-commitment to community engagement and informed decision-making.
- Tasks confri<mark>bute to efforts to expedite cleanup activities at PORTS in a more cost effective manner.</mark>
- Tasks strive to employ innovations to advance the science of cleanup at the site and inform other DOE cleanup activities around the nation.

PORTS Site Characteristics – Data Development and Utilization

PORTS Environment

- Physical and geochemical setting
- Abiotic and biotic resources
- Ecological services
- PORTS Future Use
 - Prioritization of development areas
 - Maximizing on-site resources to enhance development
 - Reduction of impact to conserve ecological assets

Considering the Regional Character of PORTS to Understand the Potential of the Ecological Assets

Ecoregion Characteristics

- Level III Western Allegheny
 Plateau
- Level IV Knobs-Lower Scioto
 Dissected Plateau
- Unglaciated uplands with mixed oak and mesophytic forests
- Ice age effects evident in floodplains with bottomland hardwood forests and agriculture

Regional Elevation Characteristics

- Dissected steep ridges
- High relief topography

OSIP, 2007

Dominant Bedrock Geology

- Underlain mostly by Mississippian-age shale and sandstone
- Regionally varying surface geology

Dominant Surface Geology

- Complex history of
 Quaternary geology
 due to the procession
 of continental glaciers
- Relict habitats
- Unique habitats

PORTS

Regional Subsurface Characteristics

Thickness of glacial sediments can greatly influence potential vegetational composition

PORTS Landscape

- 46% Mature upland native forest
- Trees in the Oak-Hickory
 association have a mean age over
 85 years
- Bottomland hardwood forests have an average height of nearly 67'
- Ridgetop native pine forests are comprised of 98.6% native species
- 135 of the 588 plant species identified have specific ecological requirements and represent high quality habitats

Regional Conservation Effort

- PORTS habitat quality is variable due to the landscape legacy.
- While much of the site is heavily disturbed, portions exhibit highquality habitat or the potential to become so through conservation efforts.

* ODNR: 32 listed plants species found in Pike County (2010-11)

* US FWS: List 117 floral and faunal species as Conservation Priorities in the Ohio River Valley Region (2002)

Using on-site data to evaluate ecological resources and model decision-making

- The comprehensive on-site data provides opportunities to evaluate ecological needs and opportunities
- Data and analyses provide the basis for evaluating decisions and model outcomes
- Models provide opportunities to maximize the efficiency and efficacy of projects

Evaluation of habitats affected by potential OSDC Plan in Study Area D

Habitat Feature	Acres
Oak-Hickory Forest	68.38
Mixed Mesic Forest	51.22
Native Pine Forest	34.35
Mowed Grass/Lawn	32.71
Ruderal Successional	18.55
Successional Scrub	16.24
Successional Forest	15.07
Oldfield - Successional	8.61
Bottomland Hardwood Forest	6.86
Ruderal-Scrub	2.24
Secondary Roads	1.60
Buildings/Facility	1.57
Ruderal Shrub-Sapling	1.23
Palustrine Shrub-Scrub Wetland	0.59
Paved Areas/Outdoor Storage	0.55
Primary Roads: Pavement Asphalt	0.47
Natural Streams	0.36
Water Conveyance/Control	0.16
Palustrine Emergent Wetland	0.03

Habitat Suitability Index (HSI) Modelling

HSI Analysis: Timber Rattlesnake Crotalus horridus

(State Endangered)

HSI Analysis: Henslow's Sparrow Ammodramus henslowii (Federal Species of Concern)

HSI Analysis: Indiana Bat Myotis sodalist (Federal Endangered Species)

dam Mann, Environmental Solutions and Innovations

HSI Analysis: Northern Long-eared Bat *Myotis septentrionalis*

(Candidate for Federal Endangered Listing)

Photo © Dave Redell

HSI Analysis: Northern Bobwhite Colinus virginianus (State Species of Concern)

Steve Maslowski/USFWS

HSI Analysis: Wood Thrush *Hylocichla mustelina*

(Common woodland resident)

Brian E. Small

On-site Mitigation Potential for: Wetlands and Headwater Streams

PORTS resources include areas for potential on-site mitigation:

Conceptual wetland areas were evaluated based on:

- -Soil properties
- -Landform characteristics
- -Potential hydrologic sources
- -Proximity to hydric vegetation
- -Existing land use/land cover
- -Potential future use and site longevity
- -Project feasibility

Wetlands could be created using in low quality undeveloped areas

Plant Community	Dominant Vegetation likely supported in this hydrologic regime	Water / Saturation Depth	
Aquatic	Submergent rooted and floating leaved herbs; cow lily, lotus, waterweed, etc.	>1 to < 4 feet depth above surface	
Deep Marsh	Emergent standing water hydrophytes; cattail, bur-reed, arrowhead, etc.	0-1 foot depth above surface	
Emergent	Emergent moist soil to standing water hydrophytes; Sedges, rushes, many low and tall herbs and graminoids, etc.	Saturated soil from within 1.5 feet below the soil surface to 1.5 feet above surface inundation	
Bottomland Hardwoods	Wet hydrophytic trees; willow, pin oak, elm, silver maple, green ash, boxelder, sycamore, etc.	0.5 feet above inundated surface to 1.5 feet below soil surface	
Riparian Forest	Mesic hydrophytic trees; hackberry, swamp white oak, cottonwood, red maple, bitternut hickory; etc.	1.5 feet above inundated surface to 2.5 feet below soil surface	
Upland Forest	Upland oak- hickory, maple-beech, flowering dogwood, Virginia pine forest	>2.5 feet above inundated surface	

Enough potential wetland mitigation exists on-site for all D&D impacts

FEATURE					
SITE	Basin (acres)	Dam (acres)	Wet pool (acres)	Wetland (acres)	
Eastern Cluster	22.06	0.78	3.23	15.23	
Southern Cluster	8.23	0.30	0.79	1.63	
Western Cluster	37.74	1.20	6.18	4.31	
Grand Total	68.03	2.28	10.20	21.16	

Many high quality headwater stream reaches exist on-site

Site classifications at each sampling site were extrapolated as a representative "stream reach".

Based on: immediate land cover and habitat, physical barriers (roads/culverts/crossings), and ownership (land use).

Note: green lines = not classified

Stream reach	Length (ft)	PHWH classification	Ownership
trib 1A-1B	2855	IIIb – IIIa	on-site
trib 1C	965	Illa	on-site
trib 1D	944	Illa	on-site
trib 2	1361	1	on-site
S1	791	I	partial
S2	2211	Not classified	partial
V1	1718	I	partial
Trib 4A	1914	Illa	on-site
Trib 4B-4C	4840	Illa	partial
T1	1369	Not classified	off-site
O1A	725	Illa	off-site
Trib 7	2112	II	on-site
Trib 9	1690	Illa	partial
Trib 10	738	Illa	on-site
W1	1357	IIIb	partial
P1	2179	Illa	off-site
N1	2821	II	off-site
B1	2489	IIIb	off-site
Trib 6	1922	Illa	on-site
Trib 8	1948	Illa	partial
Trib 3	2371	II	on-site

Class I = 3,870 ft of streams Class II = 7,305 ft of streams Class III = 24,565 ft of streams

Stream Performance

Highest priority = red Fair = colored orange lower priority = yellow

Desirable attributes include:

- on-site (DOE) ownership,
- high biological and physical stream quality
- continuous length of stream

Catchment basin management preference

Preservation = red Conservation = orange Restoration = yellow

Capitalizing on the Eco-Assets

- Significant areas of PORTS possess a high degree conservation value
- Sensitive plant communities exist with these areas
- These communities contain sensitive and listed species
- These area become a focal point for developing management strategies
- These conservation resources can be marketed as a goal for future use

Connecting Assets for Site-wide Uses

Site Attributes:

- Abundant forest canopy
- Ecological corridors
- Green space
- Historical and Archeological sites
- Multiple points of access

Site-wide Uses:

- Recreational opportunities
- Educational opportunities
- Environmental stewardship
- Conservation/Preservation opportunities

7 out of 9 Future-Use Scenarios recommend the incorporation of

Green Space

- Therefore...
 - In order to achieve quality land management that meets the diverse needs of the PORTS site future uses, a proposed objective could be:
 - Planning should include the principles of conservation management to maximize the potential benefits of all natural assets to achieve the greatest success for the ultimate future-use of PORTS

Quantifiable Benefits of a Conservation Management Planning

- Air Quality Improvements (USEPA)
- Improvement of Water Quality Management
 - Storm water runoff (USEPA)
 - Pollutant filtration (USACE)
- Affords Recreational Opportunities
 - To Improve Health and Wellness
 - Elevates Site profile and visibility
- Promotes Wildlife Habitat and Other Ecological Services
- Definable Economic Benefits

Conservation Management Planning

- To identify and evaluate features of interest for a site... Habitat Study v
- To set clear objectives for conservation of features of interest... Habitat Data ✓
- To identify issues (both positive and negative) that might influence the site...
 Ongoing
- To set out appropriate strategies/management actions to achieve the objectives...
 Ongoing
- Objectives could include designation of:
 - Priority Development Areas (PDA)
 - Special Areas of Concern (SAC)
 - Special Protection Areas (SPA)

Resource Management to Achieve Results

