Characterization of PORTS Ecological Assets: for Conservation Management Planning

Voinovich School of Leadership and Public Affairs

Presented by Gary Conley

Role of the Voinovich School and Ohio University in the Demolition and Decontamination of the DOE PORTS Nuclear Enrichment Facility near Piketon, Ohio

- Tasks support the DOE EM-commitment to community engagement and informed decision-making.
- Tasks contribute to efforts to expedite cleanup activities at PORTS in a more cost effective manner.
- Tasks strive to employ innovations to advance the science of cleanup at the site and inform other DOE cleanup activities around the nation.

Habitat Characterization Study Area

PORTS Lands: Within Perimeter Road: Study Area:

Ecoregion Characteristics

- Level III Western Allegheny
 Plateau
- Level IV Knobs-Lower Scioto
 Dissected Plateau
- Unglaciated uplands with mixed oak and mesophytic forests
- Ice age effects evident in floodplains with bottomland hardwood forests and agriculture

USEPA, 2011

Regional Elevation Characteristics

- Dissected steep ridges
- High relief topography

OSIP, 2007

Dominant Bedrock Geology

- Underlain mostly by Mississippian-age shale and sandstone
- Regionally varying surface geology

Dominant Surface Geology

- Complex history of
 Quaternary geology
 due to the procession
 of continental glaciers
- Relict habitats
- Unique habitats

PORTS FUTURE

Regional Subsurface Characteristics

Thickness of glacial sediments can greatly influence potential vegetational composition

Habitat Characterization

- What is Habitat? (Micro-scale)
 - Physical and geochemical setting
 - Abiotic and Biotic Resources
- Ecological Setting and Function? (Meso-scale)
 - Patchwork Mosaic
 - Ecosystem Services
- Disturbance Legacy
- Climatic Climax Vegetation

Quantitative Field Sampling 2011-2012

- 152 Habitat evaluation plots
- 594 Vegetation survey points

- 361 Woody vegetation samples collected
- 360 Field location points identified for:
 - Unique plants or features
 - Wildlife signs and sightings
 - Field-truthing map locations

Palustrine Habitat

Upland Habitats

Riparian and Lowland Habitats

05/10/2012

Successional Habitats and Anthropogenic Features

Plant Species

- Nearly 600 vascular plant species field- identified in 594 sample plots during this study
- Several are listed on State RTE list, but none from the Federal list were discovered
- Species List is the basis for habitat valuations, polygon classification, comparisons, wildlife habitat modeling and land planning recommendations
- Captured ~80% of all of the species that may be present in the study area

Species List

1	А	В	С	D	E	F	G	Н	T.	J	К	L
1	Date	Sample #	Taxon	Author	Common Name	Synonomy	Family	CODE	Nativity	Tolerance	Wetland Indicator	C of C
2	6/7/11	207E	Achillea millefolium	L.	Common Yarrow		Asteraceae	ACMI2	native	tolerant	FACU	1
3	6/5/11	RLW1	Acer negundo	L.	Boxelder		Aceraceae	ACNE2	native	midrange	FAC+	3
4	9/27/11	331A	Actaea pachypoda	Elliot	White Baneberry		Ranunuculaceae	ACPA	native	sensitive	UPL	7
5	5/13/11	274B	Acer rubrum	L.	Red Maple		Aceraceae	ACRU	native	tolerant	FAC	2
6	9/29/11	350A	Acer saccharinum	L.	Silver Maple		Aceraceae	ACSA2	native	midrange	FACW	3
7	5/13/11	274A	Acer saccharum	Marsh.	Sugar Maple		Aceraceae	ACSA3	native	midrange	FACU-	5
8	7/15/11	279A	Acalypha virginica	L.	Virginia Threeseed Me	rcury	Euphorbiaceae	ACVI	native	tolerant	FACU-	0
9	6/17/11	210A	Aesculus glabra	Willd.	Ohio Buckeye		Hippocastanacea	AEGL	native	sensitive	FACU+	6
10	5/25/11	207C	Ageratina altissima	(L.) King & H. R	White Snakeroot	Eupatorium rugos	Asteraceae	AGAL5	native	midrange	FACU	3
11	8/19/11	RLW_Field	Agrostis gigantea	L.	Redtop-grass	Agrostis alba	Poaceae	AGGI2	adventive	tolerant	FACW	0
12	6/5/11	RLW2	Agrostis hyemalis	(Walter) Britto	Winter Bentgrass		Poaceae	AGHY	native	midrange	FAC	3
13	9/9/11	RWL	Agalinis linifolia	Nutt.	Flaxleaf False foxglove	2	Scrophulariaceae	AGLI2				
14	9/27/11	GDC	Agastache nepetoides	(L.) Kuntze	Yellow Giant Hyssop		Lamiaceae	AGNE2	native	midrange	FACU	4
15	8/26/11	220A	Agimonia parviflora	Aiton	Harvestlice		Rosaceae	AGPA6	native	tolerant	FAC	2
16	6/15/11	230A	Agrostis perennans	(Walter) Tuck.	Autumn Bentgrass		Poaceae	AGPE	native	midrange	FACU	4
17	9/13/11		Agalinis purpurea	(L.) Pennell	Purple False Foxglove	Gerardia purpure	Scrophulariaceae	AGPU5	native	sensitive	FACW-	6
18	9/15/11	213A	Agrimonia rostellata	Wallr.	Beaked Agrimony		Rosaceae	AGRO3	native	midrange	FACU	5
19	9/29/11	GDC	Agastache scrophulariifolia	(Willd.) Kuntze	Purple Giant Hyssop		Lamiaceae	AGSC	native	midrange	UPL	4
20	9/13/11	246A	Agalinis tenuifolia	(Vahl) Raf.	Slenderleaf False Foxe	Gerardia tenuifol	Scrophulariaceae	AGTE3	native	midrange	FAC	4
21	9/27/11	GDC	Ailanthus altissima	(Mill.) Swingle	Tree-of-Heaven		Simaroubaceae	AIAL	adventive	tolerant	FACU-	0
22	8/26/11	220A	Alopecurus pratensis	L.	Meadow Foxtail		Poaceae	ALPR3	adventive	tolerant	FACW	0
23	8/26/11	221B	Alisma subcordatum	Raf.	American Water Plant	ain	Alismataceae	ALSU	native	tolerant	OBL	2
24	5/25/11	207B	Allium vineale	L.	Wild Garlic		Liliaceae	ALVI	adventive	tolerant	FACU-	0
25	8/26/11	220A	Ambrosia artemisiifolia	L.	Annual Ragweed		Asteraceae	AMAR2	native	tolerant	FACU	0
26	5/13/11	274A	Amelanchier arborea	(Michx.f.) Fern	Eastern Serviceberry		Rosaceae	AMAR3	native	midrange	FAC-	5
27	5/25/11	207B	Amphicarpaea bracteata	(L.) Fernald	American Hogpeanut		Fabaceae	AMBR2	native	midrange	FAC	4
28	10/5/11	349A	Ampelopsis cordata	Michx.	Heartleaf Peppervine		Vitaceae	AMCO2	native	sensitive	FAC+	7
29	8/10/11	251A	Antennaria plantaginifolia	(L.) Richardson	Women's Tobacco		Asteraceae	ANPL	native	tolerant	UPL	1
30	6/7/11	207E	Antennaria solitaria	Rydb.	Singlehead Pussytoes		Asteraceae	ANSO	native	midrange	UPL	3
31	8/26/11	230B	Andropogon virginicus	L.	Broomsedge Bluesten	1	Poaceae	ANVI2	native	midrange	FACU	3
32	8/19/11	RLW_Field	Apios americana	Medik.	Groundnut		Fabaceae	APAM	native	midrange	FACW	3
33	6/7/11	207E	Apocynum cannabinum	L.	Indianhemp		Apocynaceae	APCA	native	tolerant	FACU	1
34	9/27/11	GDC	Aplectrum hyemale	(Muhl. Ex Will	Puttyroot		Orchidaceae	APHY	native	sensitive	FAC	7
35	6/5/11	RLW1	Arnoglossum atriplicifolium	(L.) H. Rob.	Pale Indian Plantain		Asteraceae	ARAT	native	sensitive	UPL	6
36	10/5/11	GDC	Arabis canadensis	L.	Sicklepod		Brassicaceae	ARCA	native	midrange	UPL	5
37	9/29/11	350A	Arctium minus	Bernh.	Lesser Burdock		Asteraceae	ARMI2	adventive	tolerant	FACU-	0
38	8/29/11	211B	Aristolochia tomentosa	Sims	Wooly Dutchman's Pip	e	Aristolochiaceae	ARTO3	adventive	tolerant	FAC	0
39	6/17/11	265B	Asclepias hirtella	(Pennell) Woo	Green Milkweed		Asclepiadaceae	ASHI	native	sensitive	UPL	8
40	8/19/11	RLW_Field	Asclepias incarnata	L.	Swamp Milkweed		Asclepiadaceae	ASIN	native	midrange	OBL	4
41	9/28/11	331C	Asplenium montanum	Willd.	Mountain Spleenwort		Aspleniaceae	ASMO2	native	sensitive	UPL	7
42	5/13/11	None	Asplenium platvneuron	(L.) Britton. Ste	Ebony Spleenwort		Aspleniaceae	ASPL	native	midrange	FACU	3 :kson/

Habitat Characterization Results

- 32 Cover classes identified
 - 15 Natural classes
 - 17 Anthropogenic
- 2185 Individual habitat patches mapped

Wildlife signs and sightings

Animal Features Amphibians Reptiles Birds Insects Mammals

Field Observations of Wildlife

Species-Based Evidence of Deer Browsing

HSI Analysis: Timber Rattlesnake Crotalus horridus

@2011<u>-</u>201/

HSI Analysis: Wood Thrush *Hylocichla mustelina*

Brian E. Small

HSI Analysis: Northern Bobwhite *Colinus virginianus*

Steve Maslowski/USFWS

HSI Analysis: Henslow's Sparrow Ammodramus henslowii

© R. & N. Bowers/VIREO

HSI Analysis: Indiana Bat Myotis sodalis

Adam Mann, Environmental Solutions and Innovations

HSI Analysis: Northern Longeared Bat Myotis septentrionalis

Photo © Dave Redell

Regional Conservation Efforts

- PORTS habitat quality is variable due to the landscape legacy.
- While much of the site is heavily disturbed, portions exhibit highquality habitat or the potential to become so through conservation efforts.

* ODNR: 32 listed plants species found in Pike County (2010-11)

* US FWS: List 117 floral and faunal species as Conservation Priorities in the Ohio River Valley Region (2002)

Evaluation of habitats affected by potential OSDC Plan in Study Area D

Habitat Feature	Acres
Oak-Hickory Forest	68.38
Mixed Mesic Forest	51.22
Native Pine Forest	34.35
Mowed Grass/Lawn	32.71
Ruderal Successional	18.55
Successional Scrub	16.24
Successional Forest	15.07
Oldfield - Successional	8.61
Bottomland Hardwood Forest	6.86
Ruderal-Scrub	2.24
Secondary Roads	1.60
Buildings/Facility	1.57
Ruderal Shrub-Sapling	1.23
Palustrine Shrub-Scrub Wetland	0.59
Paved Areas/Outdoor Storage	0.55
Primary Roads: Pavement Asphalt	0.47
Natural Streams	0.36
Water Conveyance/Control	0.16
Palustrine Emergent Wetland	0.03

Conservation Management Planning??

- Defining Conservation...from the dictionary
 - 1. the act of conserving.
 - 2. official supervision of rivers, forests, and other natural resources in order to preserve and protect them through prudent management.
 - 3. the careful utilization of a natural resource in order to prevent injury, decay, waste, loss, or depletion.
 - 4. the restoration and preservation of works of art.

Conservation Management Planning??

- Defining Conservation...from the dictionary
 - 1. the act of conserving.
 - 2. official supervision of rivers, forests, and other natural resources in order to preserve and protect them through prudent management.
 - 3. the careful utilization of a natural resource in order to prevent injury, decay, waste, loss, or depletion.
 - 4. the restoration and preservation of works of art.

Classic Conservation...

- Gifford Pinchot defined it as an ethic of use —
 a land ethic in which humans and nature could
 co-exist. This ethic relies heavily on scientific
 understanding of the connection between
 humans and nature.
- The mission of the US Forest Service is to:
 "achieve quality land management under the
 sustainable multiple-use management
 concept to meet the diverse needs of people."

7 out of 9 Future-Use Scenarios chosen by public survey recommend incorporation of:

Green Space

- Therefore...
 - In order to achieve quality land management that meets the diverse needs of the PORTS site:
 - Planning should include the principles of conservation management to maximize the potential benefits of all natural assets to achieve the greatest success for the ultimate future-use of PORTS

Quantifiable Benefits of Conservation Management Planning

- Air quality improvements (USEPA)
 - Capture and mitigation by vegetation
- Improvement of water quality management
 - Stormwater runoff (USEPA)
 - Pollutant filtration (USACE)
- Affords recreational and public use opportunities
 - To Improve health and wellness
 - Elevates site profile and visibility
- Promotes Wildlife Habitat
- Maintains greatest potential for ecological services

Evaluation of Headwater Streams

To assess the quality of HW streams on- and offsite

To assess mitigation opportunities due to impacts to other HW streams from D&D activities

Evaluation of Wetland Mitigation Options

- To identify opportunities to preserve, improve, and/or create wetlands on-site
- To assess mitigation opportunities due to impacts to other HW streams from D&D activities

Managing the Eco-Assets Collectively

Prioritizing areas:

- To conserve eco-assets
- To maximize the potential benefit
- To identify high and low conservation areas for development and conservation planning

Potential Use of Green Space

Abundant forest canopy

Opportunities to interact with ecological/historical features

Multiple points of access

www.PORTSFUTURE.com

Look for:

- Published Reports and maps
- PORTS site history and pictures
- Coming soon... Video
 documentaries for a virtual
 symposium presented by our staff

Questions?

Contact information:

Gary Conley - conleyg@ohio.edu

Voinovich School of Leadership and Public Affairs,

Ohio University

*This project was funded by a grant from the U.S. Department of Energy Office of Environmental Management Portsmouth/Paducah Project Office

