

Case Study Highlights

- Use of Gamma Walkover Surveys
- Use of regression analysis
- Use of dynamic work strategies
- Incremental soil sampling
- Composite search methods for hot spot identification
- Application of real-time analytical methods

September 11, 2012

Portsmouth Training

Case Study Background

- The Paducah site is an active uranium enrichment facility
- Historical processes resulted in release of PCBs and uranium to the environment
- Ditch and creek with contaminated sediments were dredged, and the spoils were placed along the banks almost 30 years ago
- Present concern is PCB and uranium contamination in soils where dredged materials were placed
- Assumption is that uranium and PCBs are commingled

September 11, 2012

Portsmouth Training

Area of Concern

- Approximately 1 acre
- Mostly grassland
- Bordered by waste ditch on west and creek to the south
- Concern is sediment spoils from ditch and creek
- Spoils placement probably 20 to 30 years ago

September 11, 2012

Applicable Criteria

- MARSSIM applies due to radionuclide (uranium) presence
 - Multi-Agency Radiation Survey and Site Investigation Manual
- MARSSIM assumes two criteria:
 - Wide-area averaged criterion applied to an exposure unit (EU)
 - Hot spot criterion applied to much smaller areas
- For this site, those criteria were:

	Area-Averaged	Hot Spot (25 m ²)
Uranium:	10 ppm	90 ppm
Total PCB:	3.6 ppm	33 ppm
otember 11, 2012	Portsmouth Training	

Analytical Options

- Uranium (background ~ 3 ppm)
 - Gamma walkover surveys (qualitative)
 - XRF (quantitative, MDC ~ 10 ppm)
 - Alpha spectroscopy ("definitive")
- Total PCBs (not in background)
 - Test kits (semi-quantitative, MDC ~ 0.5 ppm)
 - GC ("definitive")

September 11, 2012

Portsmouth Training

Gamma Walkover Surveys Provided Unique Data Set

September 11, 2012

More than 20,000 measurements provided high-density spatial resolution regarding the presence/absence of uranium contamination

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Sample Compositing Took Place Over Two Different Spatial Scales

- One 5-increment composite sample per 25 m²
 - Each bottom-tier composite sample homogenized and split
 - One half archived, the other half used to form top-tier composites
- # of samples contributing to the top-tier composites depended on possibility of contamination
 - 5 for EU with the greatest chance of contamination
 - 8 for the EU with a medium chance of contamination
- Composites analyzed by XRF and PCB immunoassay kits
- Results compared to decision criterion
 - Decision criterion = (hot spot criterion)/(# of samples in composite)
 - Composite results averaged across EU
 - Average compared to the wide-area-average criteria

September 11, 2012

Portsmouth Training

Results...

- As expected, one composite failed for U, requiring analysis of the archived primary samples
- Its EU as a whole also failed its average comparison (95%UCL > action level)
- Split analysis identified one 25 m² "hot spot"
 - Corresponded to hot spot identified by gamma walkover survey (GWS)
- Hot spot remediated, exposed soil re-sampled
- Re-sampled results pooled with original data, EU now passed 95%UCL comparison

September 11, 2012

Portsmouth Training

JE4 This DU was a "decision unit" in your original slides. jody.edwards, 10/8/2009

Summary of Increment & Composite Numbers

- 385 total soil increments
 - 190 from 1st exposure unit (EU) High contamination probability
 - 155 from 2nd EU Some contamination probability
 - 40 from 3rd EU Low contamination probability
- Resulting in 77 bottom-tier increment-average samples
 - 38 from 1st EU
 - 31 from 2nd EU
 - 8 from 3rd EU
- Producing 11 top-tier search-composites for analysis
 - 7 from 1st EU
 - 4 from 2nd EU
- 8 increment-average (single tier) composites from 3rd EU
- A total of 23 sample analyses
 - Cleared 68 25-m² areas of hot spot concerns
 - Demonstrated wide-area average compliance for 3 EUs

September 11, 2012

Portsmouth Training

Hot Spot Detection Performance: Why 5 Increments per 25 m²?

- Assume that within a hotspot (defined as ≥ 25 m²), chance of any single increment > criterion is 50%
- Assume that if composite contains even one increment above the criterion, composite result will be > criterion
- <u>Theoretical</u> chances of a composite identifying a hot spot:
 - Discrete sample: 50% (possible outcome = > or < = 1 of 2)
 - 2-increment composite: 75% (<<, <>,><,>> = 3 out of 4)

 - 4-sample composite: 93.75% (<<<<, etc. for 15 out of 16)</p>
 - 5-sample composite: ~97% (<<<<<, etc. for 31 out of 32)

September 11, 2012

Portsmouth Training

Actual Hotspot Search Performance

- Hotspot identified by GWS also caught by soil sampling
- 10 discrete samples collected from within hotspot footprint
 - Analyzed by XRF
 - Results ranged from 4 to 649 ppm, with average of 174 ppm
 - Well above hotspot criterion of 90 ppm
 - -5 > 90 ppm; 5 < 90 ppm (= 50% hotspot detection rate)
 - Probability (via Monte Carlo) of hotspot detection if the 10 discrete samples were considered increments & randomly combined into composites using actual concentration values:
 - 1 increment (1 of the 10 randomly selected) 50% detection rate
 - 2 increments (2 selected & "composited") 66% detection rate
 - 3 increments (3 selected & "composited") 74% detection rate
 - 4 increments (4 selected & "composited") 78% detection rate

• 5 increments – 85% detection rate (actual performance)

September 11, 2012

Portsmouth Training

