
9/11/12

Case Study Highlights

- Use of XRF
- Use of dynamic work strategies
- Use of stratified sampling strategies
- Incremental soil sampling
- Application of real-time analytical methods

September 11, 2012

Portsmouth Training

Background

- Aerial deposition of Pb from a smelter over a town
- 10 yr ago most properties cleaned
- Several properties had confusing data results & thought to be outside depositional area
- Data hinted that highest Pb was in front yards along street
- Street was the main road thru town & heavily traveled by facility trucks
- Residents suspicious that cast-off from trucks was cause & wanted facility to remediate
- Any potential remediation under RCRA

September 11, 2012

Portsmouth Training

Project Decision Goals

- Resolve confusion over past conflicting data about property status
- Estimate mean (95% UCL) for yards in question
 - Compare to 500 ppm risk-based AL
 - If over, cleanup high concentration areas
- Pb source? Suggested by spatial contaminant pattern
 - Is there evidence the facility is the source & so would be responsible for any cleanup
- Summary: want to compare yard average to AL, but also need spatial information to suggest attribution & guide any cleanup

September 11, 2012

Portsmouth Training

Stratified Sampling

- Aim is to estimate mean concentration for an area that has been broken into subareas or stratums
- Higher sample density in stratums where there is expected to be more variability in results
- Mean and associated confidence limits for the area as a whole are estimated by weighting the mean and variances of subareas by their size
- Can be a much more efficient way of accurately estimating the overall mean.

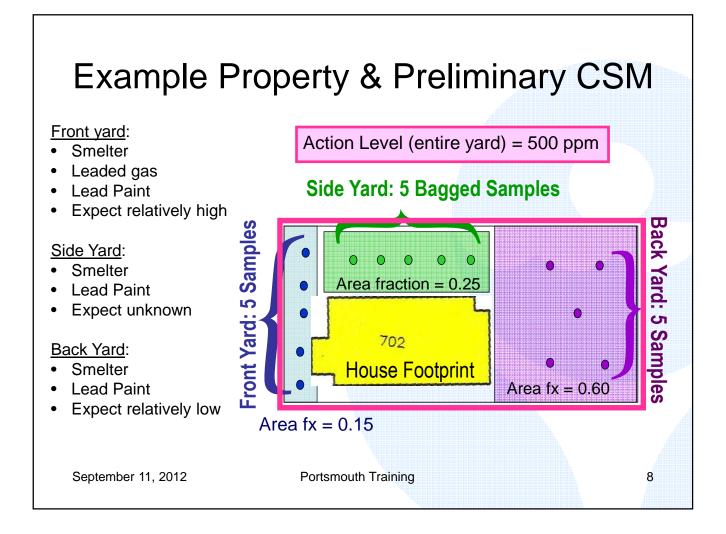
September 11, 2012

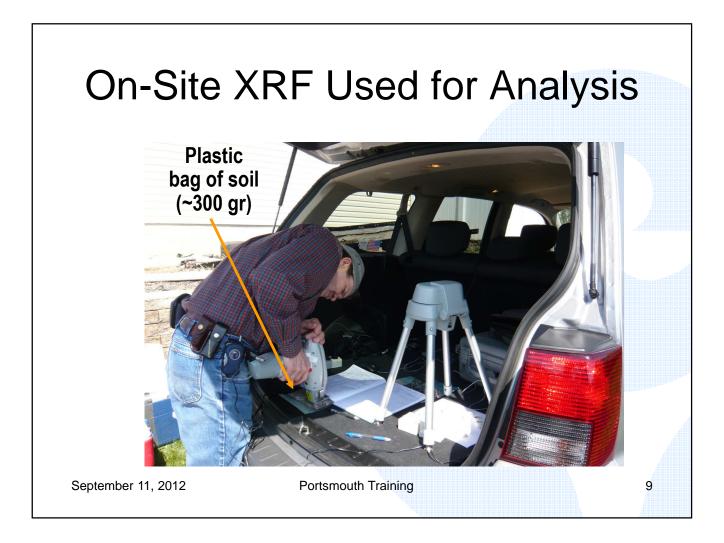
Portsmouth Training

Stratified Sampling Challenges

- To be effective we need to know how to break an area into subareas, and we need to know the variability to expect
- The first "need to know" can be based on a site conceptual model
- The use of a real-time technique (e.g., XRF) helps with the second "need to know"
 - Start be equally sampling all strata and measuring soils with XRF
 - Based on XRF data, can return to an individual stratum and collect more samples to better control variability

September 11, 2012


Portsmouth Training


Stratified Data Collection Design

- Each yard divided into 3 physical sections (stratum 1, 2, and 3)
 - S1: Front yard (very small area)
 - S2: Side yard (medium, if present)
 - S3: Back yard (large area)
- Each stratum divided into 5 ~equal subsections
- Measure area of each yard stratum & subsections
- 1 grab soil sample (~300 g) per subsection into a plastic bag (i.e., 5 samples per yard section)

September 11, 2012

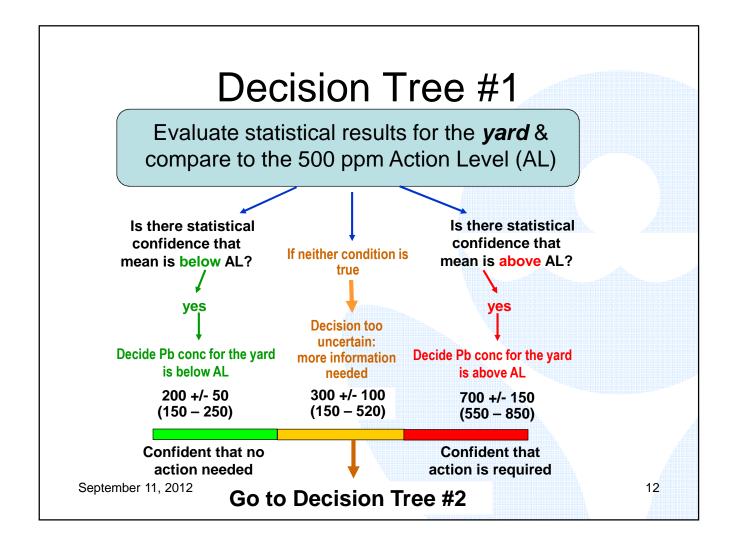
Portsmouth Training

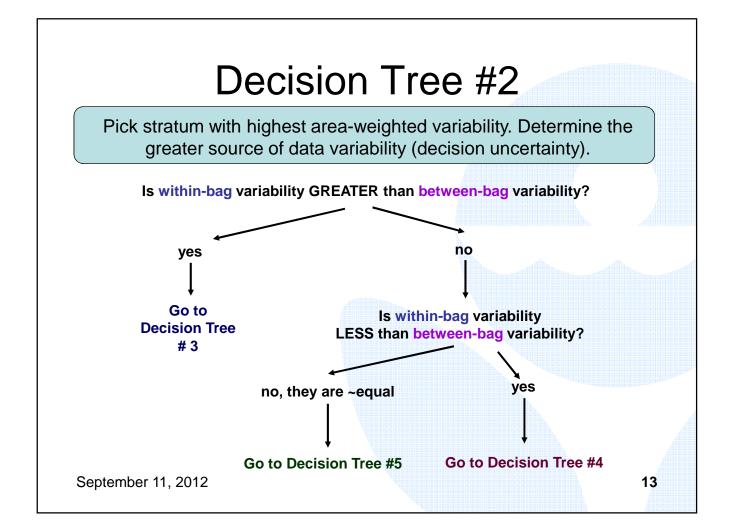
XRF Bag Analysis

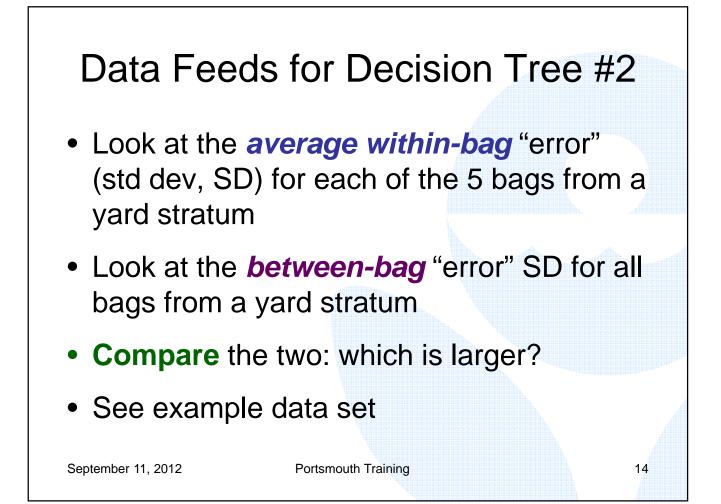
- 4 30-sec readings on bag
 - (2 on front/2 on back)
- Results entered into spreadsheet
- Spreadsheet immediately calculates:
 - 1. ave & SD for each bag
 - 2. ave & SD within each stratum
 - 3. ave & UCL for the decision unit (entire property).
 - 4. within-bag vs. between-bag variability & which is more significant
- **IF** statistical uncertainty interferes w/ desired decision confidence for DU:
 - Use #4 above & a series of decision trees to reduce statistical uncertainty until a confident decision is possible

September 11, 2012

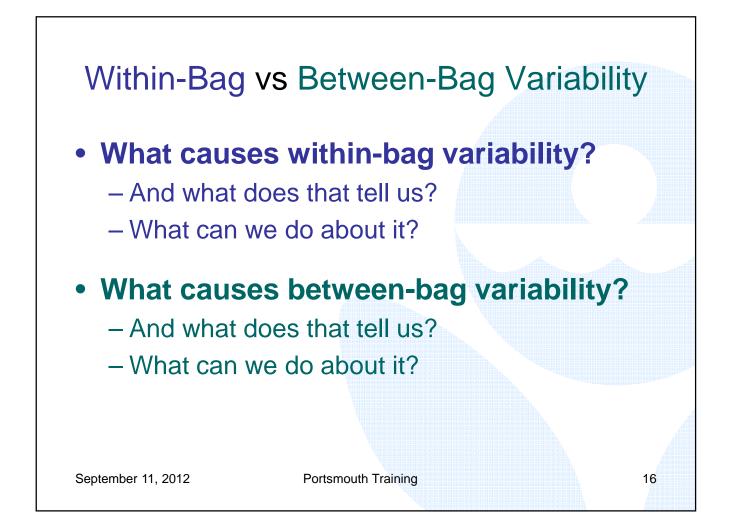
Portsmouth Training

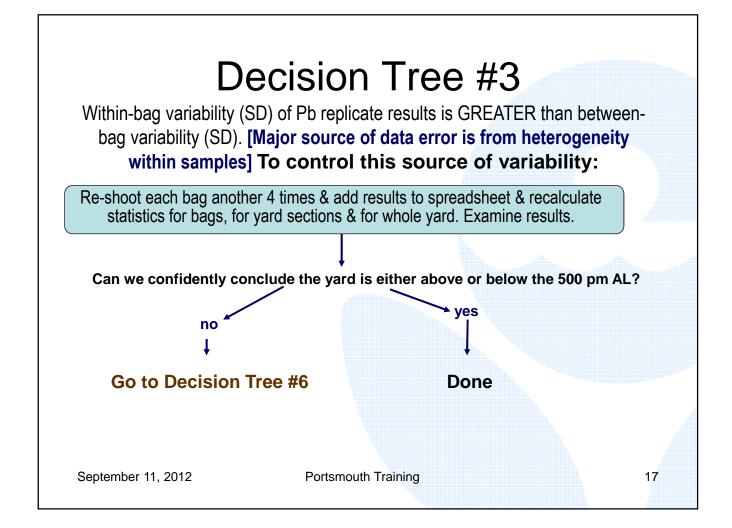


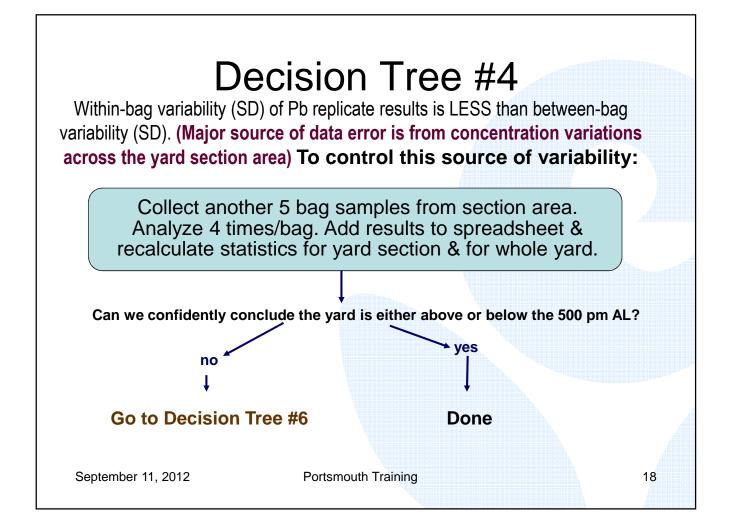

Example Results

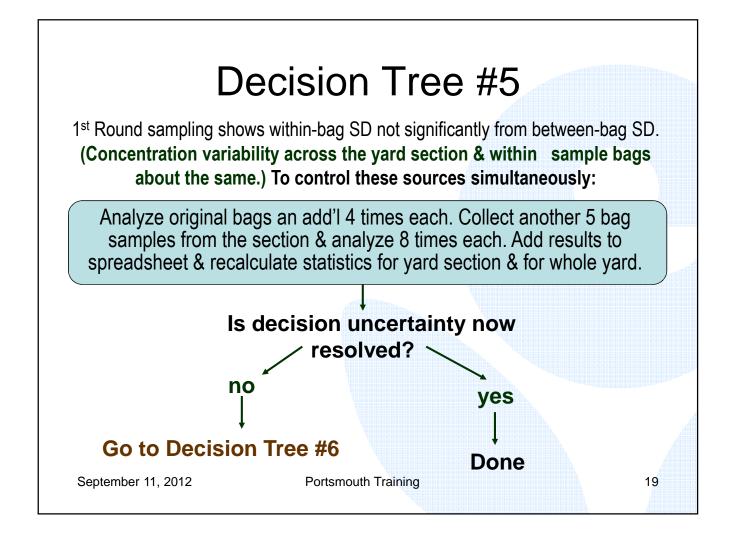

- Front yard individual average (at 95% statistical confidence) = 700 +/-150 (550 850 ppm Pb)
- Side yard average = 500 +/-100 (400 600 ppm)
- Back yard average = 300 +/-50 (250 350 ppm)
- <u>Area-weighted total yard average determined</u> statistically as 410 +/- 25 (385 – 435 ppm Pb)

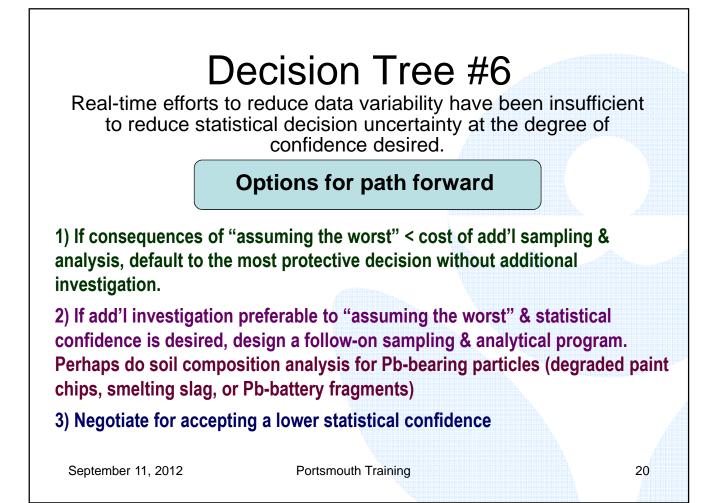
September 11, 2012

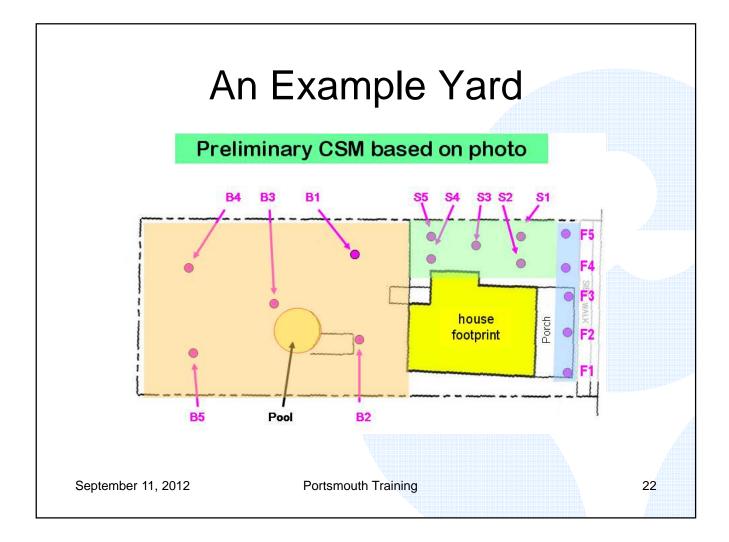

Portsmouth Training








	E	xa	mp	le	Da	ta S	Se	t		
Bag #	‡1	Bag #2		Ba	Bag #3		Bag #4		g #5	
Shot #1	700	#1	550	#1	534	#1	769	#1	450	
#2	670	#2	534	#2	440	#2	710	#2	400	
#3	740	#3	654	#3	430	#3	960	#3	500	
#4	650	#4	590	#4	420	#4	800	#4	550	
Bag Mean	690		582		456		810		475	
W/in-Bag SC	39		54		53		107		65	
Mean ø	f <u>withi</u>	n-ba	g SDs	= (39	+54+5	3+107+	·65)/	5 = <i>E</i>	53	
	To g	get <u>k</u>	betwe	een-b	<u>ag</u> va	ariabi	lity			
690		582	ノ	456		810 -		475		
Betv	veen-b	ag "e	error"	(SD) f	or 5 b	ag me	ans :	= 150		
eptember 11, 201	2		Por	tsmouth ⁻	Training					1

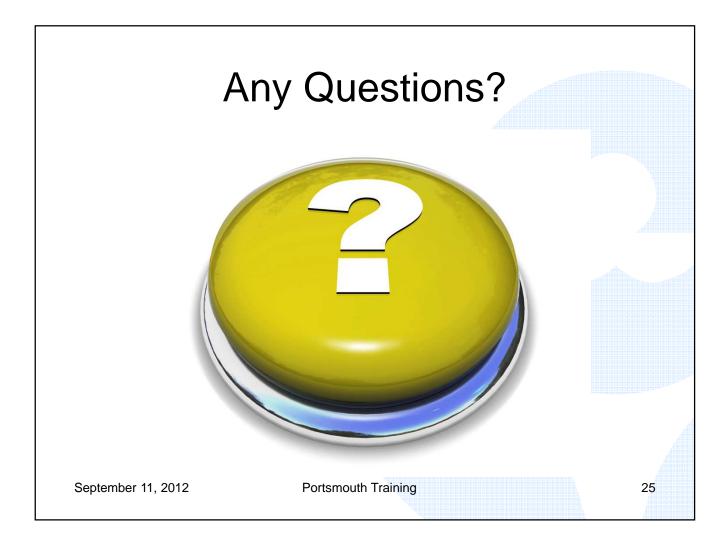

Logistics

• Field team

- 1 XRF run from back of truck
- 2 field samplers
- 1 data analyst
- 1 RCRA project manager
- XRF was the bottleneck
 - Samplers were fast; brought bags to XRF
- For the back yards, Pb consistently low (except near houses, garages, painted fence & bird bath)
 - But the 5 sampling units in the back yards were very large compared to front & side

September 11, 2012

Portsmouth Training



F Section				S Sectio			· ·		E40	1
	Section Mean =	762		SiSectio	n			Mean =	512	
	Section SD =	190				_		on SD =	265	
	Section 95%LCL =	526					ection 95		183	
	Section 95%UCL =	998	_				ection 95		841	
	Average within-bag SD =	92				-	e within-b	-	50	
	Between-bag SD =	190					letween-b	-	265	. /
Within-bag SE) > 1.5 x between-bag SD?	no			-		between-l	-	no	
Within-bag SD	< 0.5 x between-bag SD?	yes		Within-	bag SD	< 0.5 x l	between-l	bag SD?	yes	
B Section	Section Mean =	85	Calc	culation of pr	operty M	ean & U	CL using s	tratified st	atistics 8	Preliminary
	Section SD =	51	Are	ea weighte	d for the	e entire	propert	у		
	Section 95%LCL =	21			mean			# samples	total area =	= 5052 sq ft
	Section 95%UCL =	149	Fri	ont (area = 400)	761	202 265	0.079	-		
			0	(d.) (and a 2077)						
A	verage within-bag SD =	16.0	-	ide (area = 675) :k (area = 3977)	<u>512</u> 85		0.134	5		
	Between-bag SD =	51.4	-	ide (area = 675) ck (area = 3977)	85	_∠oo 51 k sum =	0.134 0.787 1.000	5	= sum	
Within-bag SD >	Between-bag SD = 1.5 x between-bag SD?	51.4 no	Bac	ck (area = 3977)	85 chec	51 k sum =	0.787 1.000	5 15 (no extra s	= sum and fill sa	ample)
Within-bag SD >	Between-bag SD =	51.4	Bac Pro	ck (area = 3977) perty Mean	85 chec , Stand a	51 k sum = ard Dev	0.787 1.000 riation, ar	5 15 (no extra s d LCL/U(= sum and fill sa	ample)
Within-bag SD >	Between-bag SD = 1.5 x between-bag SD?	51.4 no	Bac Pro	ck (area = 3977)	85 chec , Standa mean	51 k sum = ard Dev stderror	0.787 1.000 riation, ar LCL	5 15 (no extra s d LCL/U(UCL	= sum and fill sa	
Within-bag SD >	Between-bag SD = 1.5 x between-bag SD?	51.4 no	Bac Pro	ck (area = 3977) perty Mean	85 chec , Stand a	51 k sum = ard Dev	0.787 1.000 riation, ar	5 (no extra s d LCL/UC UCL 245	= sum and fill sa	2-sided)

Project Outcome

- After waiting 10 yrs, residents had their results that day
- High Pb nearest painted items
- In 2 yards, paint chips present from recent stripping of old paint
 - Toddlers present in worst yard
 - Project manager provided immediate advice to parents
 - Paint chips tested by XRF
 - 1 multi-layer chip = 18% Pb
 - SCREENING result: XRF calibrated for soil is not accurate for paint—WAY outside linear range
 - Still, the culprit was obvious

Not proof that trucks made some contribution September 11, 2012 Portsmouth Training 24

